Лого клуба "Первый шаг" Парапланерный клуб "Первый шаг"
+7(916) 956-5621
Контакты | Поиск | Форум









Система Orphus








< Назад

1. Основы аэродинамики и теории полета


Вперед >

Прежде чем мы начнем подробно разбирать особенности конструкции и управления полетом параплана, нам предстоит познакомиться со стихией, в которой "живет" параплан, — с воздухом. Процессы взаимодействия твердого тела с обтекающим его потоком жидкости или газа изучаются наукой АЭРОГИДРОДИНАМИКОЙ. Мы не станем забираться в глубины этой науки, но разобрать основные закономерности необходимо. Прежде всего нужно запомнить главную формулу аэродинамики — формулу полной аэродинамической силы.

Полная аэродинамическая сила — это сила, с которой набегающий воздушный поток воздействует на твердое тело.

Центр давления — точка приложения этой силы.

Где:

R — Полная аэродинамическая сила.

Cr — Коэффициент полной аэродинамической силы.

q — Динамический напор.

S — Эффективная площадь тела.

 

Где:

r — Плотность воздуха.

V — Скорость тела относительно воздуха (или "воздушная скорость" тела).

 

Сила воздействия воздушного потока на твердое тело зависит от многих параметров, главными из которых являются форма и ориентация тела в потоке, линейные размеры тела и интенсивность воздушного потока, определяющаяся его плотностью и скоростью.

Из формулы видно, что сила воздействия воздушного потока на тело зависит от линейных размеров тела, интенсивности воздушного потока, которая определяется его плотностью и скоростью, и коэффициента полной аэродинамической силы Cr.

Наибольший интерес в этой формуле представляет коэффициент Cr, определяющийся множеством факторов, главными из которых являются форма тела и его ориентацией в воздушном потоке. Аэродинамика — наука экспериментальная. Формул, позволяющих абсолютно точно описать процесс взаимодействия твердого тела с набегающим потоком воздуха, пока нет. Однако было замечено, что тела, имеющие одинаковую форму (при разных линейных размерах), взаимодействуют с воздушным потоком одинаково. Можно сказать, что Cr = R при продувке тела некоторого единичного размера воздушным потоком единичной интенсивности. Такого рода коэффициенты очень широко используются в аэродинамике, так как они позволяют исследовать характеристики летательных аппаратов (ЛА) на их уменьшенных моделях.

При взаимодействии твердого тела с потоком воздуха неважно, движется ли тело в неподвижном воздухе или неподвижное тело обтекается движущимся воздушным потоком. Возникающие силы взаимодействия будут одинаковы. Но, с точки зрения удобства изучения этих сил, проще иметь дело со вторым случаем. На этом принципе основана работа аэродинамических труб, где неподвижные модели ЛА обдуваются потоком воздуха, разгоняемым мощными вентиляторами. Однако даже незначительные неточности в изготовлении моделей могут внести определенные ошибки в измерения. Поэтому аппараты небольших размеров продуваются в трубах в натуральную величину (смотри рис. 3).

 

Рис. 3. Продувка в аэродинамической трубе ЦАГИ параплана

Рис. 3. Продувка в аэродинамической трубе ЦАГИ параплана
Крокус-спорт специалистами фирм ASA и Параавис.

 

Рассмотрим примеры обтекания воздухом трех тел с одинаковым поперечным сечением, но разной формы: пластины, установленной перпендикулярно потоку, шара и тела каплевидной формы. В аэродинамике существуют, возможно, не совсем строгие, но очень понятные термины: удобообтекаемое и неудобообтекаемое тело. На приведенных рисунках видно, что труднее всего воздуху обтекать пластину. Зона вихрей за ней максимальная. Закругленную поверхность шара обтекать проще. Зона вихрей меньше. А сила воздействия потока на шар составляет 40% от силы воздействия на пластину. Но проще всего потоку обтекать тело каплевидной формы. Вихри за ним практически не образуются, а R капли составляет лишь 4% от R пластины (смотри рис. 4, 5, 6).

 

Рис. 4, 5, 6. Зависимость величины полной аэродинамической силы от формы обтекаемого тела

Рис. 4, 5, 6. Зависимость величины полной аэродинамической силы от формы обтекаемого тела.

 

В рассмотренных выше случаях сила R была направлена по потоку. При обтекании же некоторых тел полная аэродинамическая сила может быть направлена не только вдоль потока воздуха, но и иметь боковую составляющую.

Если выставить из окна быстродвижущегося автомобиля сжатую ладонь и расположить ее под небольшим углом к набегающему потоку воздуха, то вы почувствуете, как ваша ладонь, отбрасывая воздушную массу в одну сторону, сама будет стремиться в противоположную, как бы отталкиваясь от набегающего потока воздуха (смотри рис. 7).

 

Рис. 7. Схема обтекания наклоненной пластины

Рис. 7. Схема обтекания наклоненной пластины.

 

Именно на принципе отклонения полной аэродинамической силы от направления движения воздушного потока основывается возможность полетов почти всех типов ЛА тяжелее воздуха.

Планирующий полет безмоторного ЛА можно сравнить со скатыванием санок с горы. И санки, и ЛА все время движутся вниз. Источником энергии, необходимой для движения аппарата, является ранее набранный запас высоты. Как саночник, так и пилот безмоторного ЛА перед полетом должны подняться на гору или набрать высоту каким-либо иным образом. Как для санок, так и для безмоторного ЛА движущей силой является сила тяжести.

Для того чтобы не привязываться к какому-либо конкретному типу ЛА (параплан, дельтаплан, планер), будем считать ЛА материальной точкой. Пусть по результатам продувок в аэродинамической трубе было определено, что полная аэродинамическая сила R отклоняется от направления движения воздушного потока на угол q (смотри рис. 8).

 

Рис. 8. Несколько позже мы убедимся...

Рис. 8. Несколько позже мы убедимся, что при обтекании
воздухом шарообразного тела сила R может отклоняться от направления
потока и разберем когда и почему это происходит.

 

А теперь представьте себе, что мы подняли исследуемое тело на некоторую высоту и отпустили его там. Пусть воздух будет неподвижен. Сначала тело будет падать вертикально вниз, разгоняясь с ускорением, равным ускорению свободного падения, так как единственной силой, действующей на него в эти мгновения, будет направленная вниз сила тяжести G. Однако по мере нарастания скорости в действие вступит аэродинамическая сила R. При взаимодействии твердого тела с потоком воздуха неважно, движется ли тело в неподвижном воздухе или неподвижное тело обтекается движущимся воздушным потоком. Величина и направление действия силы R (относительно направления движения воздушного потока) не изменятся. Сила R начинает отклонять траекторию движения тела. Причем, вместе с изменением траектории полета будет меняться и направление действия R относительно поверхности земли и силы тяжести G (смотри рис. 9).

 

Рис. 9. Силы, действующие на падающее тело

Рис. 9. Силы, действующие на падающее тело.

 

Из 1-го и 2-го законов Ньютона следует, что тело будет двигаться равномерно и прямолинейно, если сумма действующих на него сил равна нулю.

Как говорилось ранее, на безмоторный ЛА действуют две силы:

сила тяжести G;

полная аэродинамическая сила R.

 

ЛА выйдет на режим прямолинейного планирования тогда, когда эти две силы уравновесят друг друга. Сила тяжести G направлена вниз. Очевидно, что аэродинамическая сила R должна смотреть вверх и быть той же величины, что и G (смотри рис. 10).

 

Рис. 10. Установившееся прямолинейное планирование

Рис. 10. Установившееся прямолинейное планирование.

 

Аэродинамическая сила R возникает при ДВИЖЕНИИ тела относительно воздуха, она определяется формой тела и его ориентацией в воздушном потоке. R будет направлена вертикально вверх, если траектория движения тела (его скорость V) будет наклонена к земле на угол 90-q. Очевидно, что для того чтобы тело летело "далеко", нужно, чтобы угол отклонения полной аэродинамической силы от направления движения воздушного потока q был максимально большой.

 

< Назад

Оглавл.

Вперед >




Яндекс.Метрика
^Наверх